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INTRODUCTION 

Jn a discussion of the instability of a circular cylindrical shell the 

t e rm "short" is generally applied to a cylinder whose length is approxi- 

mately equal to the radius. 

an axial load that produces instability, the effect of the boundary conditions 

is no longer insignificant. 

References (1) and (2), the solution to the Donne11 type of differentialequation 

for  an orthotropic circular cylindrical shell is found for simply supported 

edge conditions. Therefore, a definite need exists for  the development of an 
expression that wi l l  yield the buckling cr i ter ia  in a form usable for designers 

when a short  orthotropic o r  stiffened cylindrical shell i s  subjected to a combi- 

nation of a pressure and an axial load and has boundary conditions other than 

simply supported. 

When a short  cylindrical shell is subjected to  

In the analyses presently available, such as - 

In addition, for very thin circular cylindrical shell, with a radius 

to thickness ratio greater  than 200, the so-called small  deflection or linear 

theory does not yield satisfactory agreement with experimental results. 
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Non-linear analyses based on an assumed deflection pattern, such as Refer- 

ences (3), (4), and (5), indicate better agreement with test  data; but such 

analyses as now constituted are not applicable for design criteria.  In this 

paper a constant factor is included i n  a radial displacement expression fo r  

the purpose of linearizing certain energy te rms  that w e r e  neglected in 

Reference (2) so that their  effect may be studied. 

lar one is needed in instability shell studies for as presently constituted the 

the inclusion of non-linear t e rms  in such studies results in such complex 

mathematical procedures that their  practical application is almost prohibitive. 

The results of such attempted linearization a s  mentioned above wi l l  be pre- 

sented in another paper 

Such an approach o r  simi- 

In order  to develop the most complete analysis possible based on 

existing strain-displacement information, the investigation w a s  begun by 

using the best general theoretical analysis and modifying and limiting it when 

needed as indicated by the mathematical difficulties encountered. The theo- 

retical approach used is s imilar  to the one used in Reference (2) wherein 

orthotropic shell analysis is applied to a stiffened circular cylinder; however, 

additional strain-displacement te rms  a r e  included that w i l l  later make pos - 

sible the linearization study mentioned above. 

In the present paper a set  of instability equilibrium equations , simi- 

l a r  to those of Reference (2), a r e  derived for an orthotropic circular cy- 

lindrical shell by applying variational methods to the expression for the total 

energy of the shell. 

ential equation of the Donnell type is obtained for a cylinder of uniform thick- 

ness subjected to a pressure and a compressive axial force. This differ- 

ential equation is solved for the case of simply supported edge conditions, 

and a quadratic algebraic expression is developed that yields the buckling cri- 

teria. 

parameters by the use of a digital computer for the purpose of establishing 

design criteria.  

case of clamped edge conditions, and a four-by-four determinant that yields 

From these equilibrium equations an eighth order  differ- 

This algebraic expression can be minimized quite readily for certain 

The Donnell type differential equation is also solved for the 
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the buckling cri teria is developed. Again it may be possible that design c r i -  

teria may be established by minimizing this determinant for certain para- 

meters  by using a digital computer. 

STRESS -STRAIN RELATIONS 

Figure 1: Coordinate System and Displacements of 
Circular Cylindrical Shell 

The circular cylindrical shell geometry employed, which is the 

same a s  that of Reference (2), is shown in Figure (1) together with the coordi- 

nate system used and the corresponding middle-surface displacements. In 

t e rms  of the shell middle-surface displacements, (A , V , and d , the ex- 

pressions for the buckling strains in  the shell wal l  are the same as those 

given in References (2) with some additional terms. 

relationships used are written as follows. 

The strain-displacement 

.L 

e,x = u,)(+ * L J p  - 2 %& 

e,, = v , ~ -  VQ + &(d ,s  + "/i) - t ( L "J , , ,  t K W / P )  (1) 
- \  - +,,+ U ] S  +(.y,s 4- %) y x - w a p  dds - W R -  %/ij 

X S  

where I< is a constant, 3 is the radius of the cylinder; ewr , e s s  

ers , a r e  the axial, circumferential, and shear  strains,  respectively; and 

a comma indicates differentiation with respect to the succeeding variable. 

, and 

F o r  a homogeneous orthotropic material, the s t ress-s t ra in  re- 

lations in generalized plane s t r e s s  can be written as follows. 
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In the preceding equations 

ferential, and shear stresses, respectively; ir and kZare  the values of the 

moduli of elasticity averaged over the thickness in the axial and circum- 

ferential directions, respectively; G is the average shear modulus , and 

sdx and &s a r e  Poissonls ratios. 

, GSL , and G.: , a r e  the axial, circum- 

For convenience in later calculations , the following constants and 

notations, similar to those given in Reference (2), a r e  introduced. 

also defined. 

(4) 

Based on Maxwell's reciprocal theorem, the following relationship 

must hold between the elastic constants. 

EL '3,: = q L)- # (5) 

The two expressions foro(+ and % in Equations (3) are the result of the 

above relationship. 

STRAIN ENERGY AND TOTAL ENERGY EXPRESSION 

The instability differential equations of equilibrium wil l  be derived 

using the same procedure as given in Reference (2). For an elastic system, 

a criterion of buckling is that the variation of the change in the energy of the 
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system due to buckling, with respect to the displacements, must be zero. 

Described mathematically, this criterion becomes 

i(u++)-=. 0 (6) 

w h e r e u  is the change in the strain energy of the shell and i T  is the change 

in the potential energy of the external forces during the buckling process. 

If initial bending stresses a re  neglected 

UI 

In the preceding expression G), , Oj, , and GXS a r e  the membrane stresses 

[‘*p c%Axt- OI-: e*-, 4 C;; c,S+ i (a  i* fr,+ 6,s CAS + G;; C F S ]  AV, (7) i, - - - 
existing in  the shell in the compressed but unbuckled state; Txx , css , and 

csa 
the volume of the shell wall. 

are the s t resses  superimposed during the buckling process, and Vs is 

The strain energy of the shell can be computed in te rms  of the buckling 

strains and the pre-buckling stresses by substituting Equation (2) into Equation 

(8) with the following result. 

- 
If p designates a radial pressure, then R for the case of ‘P 

an external pressure; and n-. - -= -.I f o r  an internal pressure. The theore- 

tical development wil l  be continued for i&,-.-pR , and for this case the 

change in the potential energy of the external forces during buckling is given 

by the following expression. 

a I, 6 

where is the middle surface area of the shell wall. 

The total energy of an orthotropic circular cylindrical shell can then 

be obtained in te rms  of the displacements and their  derivatives by substi- 

tuting Equations (1) into Equation (8) and adding the result  to Equation (9). 
Af te r  integrating over the shell thickness and retaining only second order  

te rms ,  the following expression for the total energy is obtained. 

- 
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EQUILIBRIUM EQUATIONS AND NATURAL BOUNDARY CONDITIONS 

RESULTING FROM THE APPLICATION OF VARIATIONAL PROCEDURES I 

From Equation (10) the following expression is obtained for the vari-  

I ation in the total energy of the shell after making the substitutions indicated 

by Equations (3). I 

After using dAs= dr& , applying a well-known _ _  identity from the 

calculus of variations, and integrating Equation (11) by parts between the 

proper limits, the following expression is obtained for the variation in the 
total energy. 

I 

6 



The change in the total energy of a system must vanish for any of 

the arbi t rary virtual displacements JL  , 

in equilibrium. 

(12) that are multiplied by J & , Jr, and 6 W, respectively, must vanish; 

and the following equations of equilibrium are obtained from this requirement. 

$\r, and 4 
Therefore the integrands in the surface integral of Equation 

when the system is 

( d ~  + d f - D I / Z P ' ) k s x  t &'W;A,, / p  0 (14) 

w r f m * / r ~ ) ~ t  (2  or x/n'-a,)3q--x i / p R t z r D . / R ' )  &s 

- % 5 Y ; x  /K f (7 -0CfJP) Y;, f & y,,,/k -& bt ,(.S / R  = 0 

- 
-2'85 W A S  + Di W ~ M  t D ~ W ; S J S  + (ZD3t2 f)q)w)otr~ 'd+c(,,/K 

(15) 
- 

The following natural boundary conditions are obtained as a result of the re- 

quirement that the change in the total energy of the system represented by 

the line integrals of Equation (12) must vanish for any of the virtual dis- 

placements o r  their  derivatives. 
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DEVELOPMENT OF A DONNELL TYPE DIFFERENTIAL EQUATION 

In order to derive a Donne11 type of differential equation, Equations' 

(13), (14), and (15) are written in the following manner. 



A linear differential operator is defined as follows: 

By successive differentiation and combination Equations (13a) and 

~ expression. 
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SOLUTION OF THE DONNELL TYPE OF DIFFERENTIAL EQUATION FOR 
A LONG CYLINDER 

The assumption that the radial buckling displacement has the 

following form results in a solution of Equation (21). 

(23) 

In the above equation A is a constant and the dimensionless parameter, 

), - trn/L , is introduced. The above expression does not satisfy the 

boundary conditions for either a simply supported o r  a clamped edge shell; 

therefore, the following derivation should only be used on a long cylindrical 

shell in which the boundary condition effects a r e  negligible. . .  

The substitution of Equation (23) into Equation (21) is a solution of 

the stability equation provided a certain relation is satisfied. This relation- 
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ship results in the following algebraic equation which is the eigenvalue 

equation of the stability differential equation. 

I 
I In the preceding equation m and n a r e  integers whose values govern the 
1 

buckled mode. 

The following te rms  are defined in order  to utilize Equation (24) for 

design when a torque l- and an axial compressive force p a r e  applied to 

an orthotropic cylindrical shell in addition to a pressure p . 

Since 

Then 

The substitution of Equations (26) and (28) into Equation (24) results 
1 1  in the following quadratic expression in t e rms  of the axial pressure" 
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In Equation (29) the buckled mode is described by the integer values 

of )n and n . Since the lowest critical load is desired, the values used in 

this equation must be chosen so as  to minimize f - .  in order to find its 

smallest positive value that wil l  satisfy Equation (29). 
to minimizing the energy. The values of V and n for which f will  be a 

,----- This is equivalent 

t minimum in the past have been obtained by the following methods. * 

1. A value for M was chosen based on experimental evidence and, 

assuming n continuous, n was mathematically minimized 

with respect to f . O r  a value of 

ly minimized. 

A t r ia l  and e r r o r  procedure was used to determine the values of 

%I and . 

w a s  chosen and M formal- 

2. 
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3. Graphical methods w e r e  used. 

F o r  the above methods to insure accurate results, in most cases the 

labor involved is tremendous; however, the use of a digital computer reduces 

this t ime to only a few minutes. 

that determines the minimum positive values of f for the parameters 

Once a computer program has been written 

, 

K ,  , and / c z ,  this program can readily be adapted for use in developing 

design data. No interaction relationships or equations are needed with such 

a program. 

SOLUTION OF THE DONNELL TYPE O F  DIFFERENTIAL EQUATION FOR 

A SIMPLY SUPPORTED CYLINDRICAL SHELL 

The assumption that the radial buckling displacement w has the 

following form also results in a solution of Equation (21) when %s. is zero. 

The above expression satisfies the boundary conditions on the W displacement 

for a simply supported cylindrical shell. The substitution of Equation (31) 
into Equation (21) is a solution of the stability equation provided again that 

a certain relationship is satisfied. After considerable mathematical manipu- 

lation this relationship results in  the following second degree algebraic 

equation which is the eigenvalue equation of the stability differential equation. 

I 

i 

It is easily seen that the above equation can be derived from Equation (29) by 

setting Kz equal to zero. 

Equation (29) can also be applied to the case of a simply supported cylindri- 

cal  shell that is subjected to an axial compressive force 2 combined with 

a radial pressure p . 

Thus any procedure that minimizes 8 from 

SOLUTION OF THE DONNELL TYPE OF DIFFERENTIAL EQUATION FOR 
A CYLINDER WITH CLAMPED EDGES 

For this particular case Nu is again assumed to  be zero and the 

following substitution is made in  Equation (21). 
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where 

a ev = (d,, + K Z ~ , , ) C K ~  R L / R ~ )  
Equation (34) can be written a s  follows: 
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. where 

After repeated differentiation and considerable algebraic manipulation it can 

be shown that 

G3= 73, 

G-4. = E4 

(44) 

(45) 

- 
Since G is a function of -the variable that represents the circum- 

ferential direction, it must be a periodic function. 

of Equations (46), (471, (48), and (49) is given by trigonometric functions. 

Therefore, the solution . . ,  

A s  a result the following values for the constants 73, , 8 2  , 
a r e  obtained. 

, and 8, , 
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i , h' A,/\<, - - h b / / t  1 \vwid - - , ? /L /g - -  (50) 

b - oa74,/Ri (53) 

cr b> - - 3  AA/Rk 4-13' A,/&! - h y , ,  /\C (5 1) 

(5 2) = h$C\S/f(* - n= AY/T<?- 

The substitution of Equations (37), (42), (43), (44), (45), (50), (51), 
(52), and (53), into Equation (36) results in the following differential equation, 

(54) +-- +B,fPI %flP -t 9, TX + Baf - 0  

(rxY iBs(6aY 4 Bb(ray 4 (ra) -I- Bq - Q (59) 

When the quantities I<, and and positive integer values of Q are 

chosen in such a manner that two roots of the preceding quartic equation are 

real  and negative, then a solution of Equation (54) can be written inc the 

following manner, 

I - 
where T+ , EIc, , d , ,  , and Bik , are constants and four roots of Equation(59) 

a r e  written in the form r= & ir, and r= i ra 
I If Equation (60) is used to satisfy the following clamped edge geo- 

metric boundary conditions , then the natural boundary conditions given by 

Equations (16) may not be satisfied. 
I 

1 
p.0) = f (L )  '= T*b)  = +- 7L) = 0 (6 1) 

The application of the preceding boundary conditions to Equation (60) .results 
I in the following linear homogeneous algebraic equations in t e rms  of the con:+ 

stants given in Equation (60). 

18 
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nant of the coefi cients of 69 B t 0  , B l ,  , and B I Z ,  must be zero o r  

6 I 0 I 

From the preceding expression the following eigenvalue equation of the stab- 

ility differential equation is obtained. 

In order to determine the buckling load f o r  a clamped edge circular 

cylindrical shell subjected to a combination of a hydrostatic pressure and an 

axial compressive load, by use of the preceding analysis, a digital computer 

program needs to the written that established sets  of values for K ,  and 

and positive integer values of )7 which satisfy Equations (59) and (64) and 

yield two negative values for r z  in Equation (59). 

value of f that satisfies these conditions determines the critical buckling 

load. 

The minimum positive 

Calculations need to be performed for comparison with experimental 

results in order  to establish the validity of the preceding analysis. 

preceding analysis does not yield accurate comparison with experiments, then 

a general solution of Equation (54) needs to be found that satisfies the geo- 

metric boundary conditions given by Equations (61) and the natural boundary 

conditions given by Equations (16). 

If the 

- 
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Constants that a r e  functions of the exten- 
sional and shear stiffnesses, the bending 
and twist rigidities, the applied pressure, 
the axial load, and the applied torque 

As Area of the middle surface of the shell 

Bending and twis t  rigidities of an elemen- 
tal area of an orthotropic circular eylin- 
drical shell 

D ,  , D~ , , D,, 

e.srr; 5 5 ,  err Axial, eircumferential and shearing strain 
Moduli of elasticity for orthotropic circu- 
lar cylindrical shell 

Function of the axial coordinate derived 
from the radial displacement 

Shear modulus for  orthotropic circular 
cylindrical shell 

Function of the Circumferential coordinate 
derived from the radial displacement 

Wall thickness of the shell 

Parameter introduced for the purpose of 
later studying the effect of previously 
neglected higher order energy terms. 
For  the present paper 

Ratio of the radial pressure to an axial 
load function 

Ratio of a torque function to an axial load 
function 

E , ,  .CS 

F 

G 

F 
h 

kr 

Kr 

L Length of the shell 

.WI Integer that indicates buckled mode in the 
axial direction 

. n Integer that indicates buckled mode in the 
circumferential direction 

Axial, circumferential and shear s t r e s s  
resultants per unit length 

? Radial or hydrostatic pressure 

c p Axial load 

c -  

Nu, &.s , 

20 
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u 
V 

Function of the axial load expressed in 
pressure units 

Function of the applied torque expressed 
in pressure units 

Mathematical operator 

Roots of an auxiliary equation 

Radius of cylindrical shell 

Axial, circumferential and radial coordi- 
nates of cylindrical shell middle surface 

Applied torque 

Axial, circumferential and radial dis - 
placements of cylindrical shell middle 
surface 

Change in the strain energy of the shell 
during the buckling process 

Change in the potential energy of the ex- 
ternal forces during the buckling process 

Volume of shell wal l  

Extensional and shearing stiffnesses of 
orthotropic cylindrical shell 

Parameter that defines the ratio of the 
radius of the cylinder to the length of the 
cylinder 

Poisson's ratios for orthotropic shell 

Axial, circumferential and shearing 
s t resses  
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